Celebrating 150 years of advancing medical research, education, and patient care to help people live longer, healthier lives

Ashok Tiwari & John Sunderland Department of Radiology & Physics

GATE simulation of Discovery MI PET/CT scanner and its extended axial field-of-view to 2 m

GATE Scientific Meeting 2021 May 20, 2021

CHANGING MEDICINE. CHANGING LIVES.®

DMI scanner specifications

Axial Field of View	20 cm
# of r-sectors	34
# of major rings	4
# of detector rings	36
Patient bore diameter	70 cm
Each ring has	544 crystals
Total crystals	19584
Crystal material	LYSO
Crystal size	3.95 x 5.3 x 25 mm ³
Coincidence window	4.9 ns
Energy window	425 - 650 keV
Timing resolution	385 ps
# of CT slice	128

Fig: Discovery MI PET/CT scanner at Ulowa

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

DMI 4-ring scanner modeling in GATE

Discovery MI PET Scanner 11 # of crystals: 19584 Crystal size: 3.95 x 5.3 x 25 mm³ Crystals per ring: 544 Crystals: LYSO R35 cm 34 Bore diameter: 70 cm Rings: 4 - major rings 36 detector rings 30 axial -200 mm transaxial 2345678 Block Block Block 2 4 r-sectors 65 mm (Block 1 Block 0

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

GATE digitizer module

# 1. Sum all pulses/gate/digitizer/Singles/insertadder/gate/digitizer/Singles/insertreadout/gate/digitizer/Singles/readout/setDepth2		# 5. Energy window /gate/digitizer/Singles/insert /gate/digitizer/Singles/thresholder/s /gate/digitizer/Singles/insert /gate/digitizer/Singles/upholder/setu /gate/digitizer/Singles/describe	etThreshold Jphold	thresholder 425 keV upholder 650 keV
# 2. Gaussian blurring of energy spectrum /gate/digitizer/Singles/insert /gate/digitizer/Singles/blurring/setResolution /gate/digitizer/Singles/blurring/setEnergyOfReference	blurring 0.12 e 511 keV	# 6. Coincidence Sorter /gate/digitizer/Coincidences/setWind /gate/digitizer/Coincidences/minSec /gate/digitizer/Coincidences/Multiple takeAllGoods /gate/digitizer/Coincidences/describ	dow :torDifference esPolicy ee	2.45 ns 3
# 3. Coincidence resolving time - temporal resolution /gate/digitizer/Singles/insert /gate/digitizer/Singles/timeResolution/setTimeResol # 4. Deadtime /gate/digitizer/Singles/insert /gate/digitizer/Singles/deadtime/setDeadTime /gate/digitizer/Singles/deadtime/setMode /gate/digitizer/Singles/deadtime/setMode /gate/digitizer/Singles/deadtime/chooseDTVolume	n timeResolution ution 385 ps deadtime 200. ns nonparalysable my module	# 7. Delayed window /gate/digitizer/name /gate/digitizer/insert /gate/digitizer/delay/setWindow /gate/digitizer/delay/setOffset /gate/digitizer/delay/MultiplesPolicy /gate/digitizer/delay/describe	delay coincidence 2.45 ns 500. ns takeAllGood	Sorter s

NEMA NU-2 Tests 2018

- 1. Sensitivity
- 2. Noise equivalent count rates, scatter fraction
- 3. Spatial resolution (FBP, no scatter, no attenuation)
- 4. Image quality (Requires vendor specific reconstructions)

Large Axial Field of View Scanners

Scanner	Architecture	Crystal size (mm ³)	Crystal	AFOV
uEXPLORER	United Imaging Healthcare's uMI 550 and 780 PET/CT	2.76 x 2.76 x 18.1	LYSO	194 cm
PennPET Explorer	Philips Vereos PET	3.86 x 3.86 x 19	LYSO	64 cm
Siemens Vision Quadra	Siemens Biograph Vision PET	3.2 x 3.2 x 20	LSO	106 cm

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

1. Sensitivity: 4 ring and extended AFOV up to 2 m

- Ability of scanner to detect annihilation photons
- Model scanner geometry (4, 8, 20, and 40-ring) in GATE keeping all crystals geometry same
- > Phantom material: plastic tube with 5 aluminum sleeves
- > Aluminum sleeves were added subsequently one at a time
- Source: back-to-back gamma

Fig1 **A**: NEMA sensitivity phantom for 4 (AFOV 20 cm) & 8-ring (AFOV 40 cm) scanner (**B**) 170 cm long phantom for 20 (AFOV 1m) & 40-ring (AFOV 2 m) scanner. Only the inner polyethylene tube is shown in figure.

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Sensitivity results

Note: Simulation results were compared to measurement results presented in: "Hsu, D.F.C., et al., *Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.* J Nucl Med, 2017. **58**(9): p. 1511-1518".

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Axial sensitivity

Fig: Axial sensitivity profile for a 3.2 mm diameter 170 cm long line source shown for a scanner with 4, 8, 20, 30, and 40-ring. 30 sec GATE simulation and 4 MBq ¹⁸F activity was used.

2. Spatial resolution

- ➢ 3-point sources
- Sources are glass capillary tubes of height = 1 mm, ID = 1 mm & OD = 1.8 mm
- Source volume = 0.00079 cc
- Activity used: 0.15 kBq (~ 190 kBq/cc), same activity in all tubes
- Simulation time: ~6 hrs (in GATE) to ensure at least 100,000 coincidences per NEMA suggestions
- Image Reconstruction using FBP, no attenuation, no scatter

Fig: Sources positioning for spatial resolution test

FWHM calculations

- Image reconstruction with FBP
- Voxel size = 2 x 2 x 3.5 mm³
- Matrix size = 259 x 259 x 71
- Generate line profile and calculate FWHM

	GATE		Measurement (Stanford)			
	FWHM	FWTM	FWHM	FWTM		
(0, 1, 0) cm						
Radial	3.84	8.82	4.17	9.14		
Tangential	4.00	8.64	4.40	9.17		
Axial	4.41	9.76	4.57	10.38		
(0, 10, 0) cm						
Radial	5.17	9.43	5.65	10.36		
Tangential	4.96	9.03	4.74	9.68		
Axial	5.90	11.41	6.39	12.34		
Percent differences up to 0.5%						

Percent differences up to 9.5%

3. Count rates and scatter fraction

- At least 500,000 coincidences per NEMA standards
- Activity concentration was calculated based on the activity in the scatter phantom
- \succ Simulations were performed using activity in the range of (1 800) MBq

 $NECR = \frac{C_T}{C_c + C_T + kC_P}$ Where k = 1 is set, based on based on the assumption that a low variance estimate of randoms is used

Fig (A): Scatter phantom for 4-ring (B) modified scatter phantom for 20 and 40-ring scanner. In both figures, the line source of inner diameter 3.2 mm radially offset 45 mm from central horizontal axis.

NIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

NEMA protocols to estimate count rates: e.g., activity using 800 MBq

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Delayed sinogram and prompts vs delayed coincidences

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Results: Simulation vs measurement 4-ring scanner with 70 cm scatter phantom

Plot on right: Comparison with measurement performed at Stanford university by Hsu et al., "Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System", JNM, 2017

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Count rates comparison

4-ring scanner with 70 cm scatter phantom
20 & 40-ring scanner with 175 cm long scatter phantom

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE

Conclusion

- Comparison of simulation with measurements resulted satisfactory (~9%), being the values within the measurement uncertainties, in the range of activities practically used in research scans
- Sensitivity gain of ~24-fold if we increase the AFOV to 2 meter
- NECR comparison of 4-ring vs 40-ring scanner gives a performance gain of ~25-fold
- Overall, this preliminary study suggests that gain of ~25x can be achieved if we increase the scanner AFOV to 2 m using the DMI scanner architecture

Thank you for your kind attention!

Contact: ashok-tiwari@uiowa.edu https://ashok-tiwari.github.io

UNIVERSITY OF IOWA CARVER COLLEGE OF MEDICINE